Symmetries and Invariant Differential Pairings
نویسندگان
چکیده
منابع مشابه
Symmetries and Invariant Differential Pairings
The purpose of this article is to motivate the study of invariant, and especially conformally invariant, differential pairings. Since a general theory is lacking, this work merely presents some interesting examples of these pairings, explains how they naturally arise, and formulates various associated problems.
متن کاملInvariant Differential Pairings
In this paper the notion of an M -th order invariant bilinear differential pairing is introduced and a formal definition is given. If the manifold has an AHS structure, then various first order pairings are constructed. This yields a classification of all first order invariant bilinear differential pairings on homogeneous spaces with an AHS structure except for certain totally degenerate cases....
متن کاملSymmetries and Group-invariant Solutions of Nonlinear Fractional Differential Equations
In the paper, methods of Lie group analysis are applied to investigate symmetry properties of some classes of nonlinear fractional differential equations. For class of equations Dy = f(x, y), 0 < α < 1, the problem of group classification is solved. Symmetry properties of equations D t u = (k(u)ux)x, 0 < α ≤ 2 for different orders of α are compared. Obtained symmetries are used to construct exa...
متن کاملSelf-Invariant Contact Symmetries
Every smooth second-order scalar ordinary differential equation (ODE) that is solved for the highest derivative has an infinite-dimensional Lie group of contact symmetries. However, symmetries other than point symmetries are generally difficult to find and use. This paper deals with a class of one-parameter Lie groups of contact symmetries that can be found and used. These symmetry groups have ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Symmetry, Integrability and Geometry: Methods and Applications
سال: 2007
ISSN: 1815-0659
DOI: 10.3842/sigma.2007.113